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Abstract Tidally influenced wetlands along the Texas coast
provide important habitat for wintering waterfowl and myriad
other fish and wildlife species. Because habitat values may
differ among marsh salinity zones (e.g., waterfowl food re-
sources and use are greatest in fresh and intermediate marsh),
the spatial distribution of marsh types is important for under-
standing the capacity of coastal landscapes to support water-
fowl and other wildlife populations and informing coastal
restoration priorities. Additionally, documenting spatial pat-
terns of coastal marsh types is necessary for projecting future
landscape change and examining impacts of environmental
processes (e.g., tropical storms, sea level rise). We used a
helicopter-based vegetation survey and remotely sensed im-
agery to delineate marsh types along the central Texas coast
into four categories: fresh, intermediate, brackish, and saline.
We recorded vegetation composition at 342 sample points and
combined these data with Landsat Thematic Mapper imagery
to perform a supervised classification of marsh types through-
out our 122,995 ha survey area. Our initial coarse

classification delineating coastal marsh from other habitat
types was 92 % accurate. Intermediate, brackish, and saline
marsh each comprised about 30 % of the coastal marsh in our
study area. Freshwater marsh comprised <1 % and may have
been underrepresented within the coastal zone due to place-
ment of the inland boundary of our study area. Our final
classification of marsh types was 77.2 % accurate which will
provide a framework for further delineation efforts. We offer
several considerations for future coastal marsh delineation
efforts along the Texas coast.
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Coastal marsh consists of several wetland types, each with
their own dominant species, salinity, hydrology, and useful-
ness to waterfowl and other wildlife. Chabreck et al. (1989)
identified four distinct marsh types defined by salinity con-
centration – fresh, intermediate, brackish, and saline – and
reported that plant diversity was greatest in freshwater marsh
and declined with increasing salinity. Freshwater marsh has
the greatest plant species diversity and lowest water salinity
(≤0.5 ppt). Spikerush (Eleocharis spp.), bulltongue arrowhead
(Sagittaria lancifolia), and many submerged aquatic and
floating-leafed plants can be found in this marsh type
(Cowardin et al. 1979). Zwank et al. (1989) found that fresh
marsh was the most frequently used marsh type by mottled
ducks (Anas fulvigula) in Louisiana and is likely the most used
coastal marsh type by other waterfowl species. Water salinity
in intermediate marsh averages 0.5 to 5 ppt and is only
partially influenced by tides (Cowardin et al. 1979).
Submerged aquatic species such as southern naiad (Najas
guadalupensis) and pondweeds (Potamogeton spp.) are com-
mon and overall vegetation diversity is high. Typical emergent
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plants found in intermediate marsh include marshhay cord-
grass, common reed (Phragmites australis), bulltongue ar-
rowhead, and coastal water hyssop (Bacopa monnieri)
(Cowardin et al. 1979). Brackish marsh is part of the transi-
tional zone between saline and fresh environments with water
salinity ranging from 5 to 18 ppt. Vegetation diversity in
brackish marsh is greater than in salt marshes, and common
species include marshhay cordgrass (Spartina patens), sea-
shore saltgrass (Distichlis spicata), Olney bulrush (Scirpus
americanus), and widgeon grass (Ruppia maritima)
(Cowardin et al. 1979). Brackish marsh provides important
foraging habitat for diving ducks and provides year-round
habitat for mottled ducks (Breininger and Smith 1990;
Erwin 1996). Salt marsh is usually found closest to marine
waters and immediately adjacent to the subtidal portions of
bays and estuaries. Salinity ranges from 18 to 40 ppt, and is
characterized by salt tolerant plant species such as smooth
cordgrass (Spartina alterniflora), seashore saltgrass, and
needlegrass rush (Juncus roemerianus) (Cowardin et al.
1979). Salt marsh is believed to offer the least amount of
energy to waterfowl among the four types but is important
for buffering tides and salinity for marshes further inland
(Esslinger and Wilson 2001).

Wetlands along the Texas coast have been lost to and
become degraded by agriculture and development over the
past century (Dahl 1990; Moulton et al. 1997). Moulton et al.
(1997) estimated that wetland area throughout the Texas
Coastal Plain had declined by 85,222 ha from the 1.6 million
ha that existed in the mid-1950s, with coastal marsh account-
ing for about 30% of this decline (Moulton et al. 1997). These
changes have likely reduced the carrying capacity of water-
fowl habitats along the Texas coast.

Because vegetation community and diversity vary in re-
sponse to salinity, abundance of waterfowl foods is also as-
sumed to vary by salinity, with an inverse relationship be-
tween food abundance and salinity. The Gulf Coast Joint
Venture (GCJV) uses a bioenergetics model to extrapolate
dietary energy abundance among the four coastal marsh types
(i.e., fresh, intermediate, brackish, and saline) and calculate
the capacity of coastal landscapes to satisfy energetic demands
of wintering waterfowl populations. Because habitat values
differ among marsh types, estimating the capacity of coastal
landscapes to support wintering waterfowl, and consequently
calculating habitat conservation objectives, requires knowl-
edge of the spatial extent and distribution of different marsh
types.

Since 1968, the Louisiana Department of Wildlife and
Fisheries has conducted a helicopter-based survey at approx-
imately 7 to 10 year intervals to delineate fresh, intermediate,
brackish, and saline coastal marsh types within the Louisiana
coastal zone (Visser et al. 1998, 2000). These data have
revealed temporal changes in the distribution and extent of
marsh types and enabled examination of how they have been

affected by anthropogenic activities and natural events, in-
cluding tropical storms, sea level rise, subsidence, and coastal
restoration projects. Additionally, the GCJV has used these
data in calculations of waterfowl carrying capacity of the
Louisiana coastal marshes. However, extant spatial databases
of wetlands and landcover for the Texas coast (e.g., National
Wetlands Inventory [NWI], Coastal Change Analysis
Program [CCAP]) have classified marsh types only into fresh
and estuarine categories, thus limiting the accuracy and pre-
cision of landscape-scale carrying capacity estimates. The
ability to delineate coastal marsh types in Texas in a repeatable
manner is needed to increase confidence in calculations of
landscape carrying capacity for waterfowl and other wildlife
populations, refine habitat conservation priorities, and enable
more detailed examinations of how coastal processes may
shape landscapes in the future. Thus, we designed a pilot
survey to delineate coastal marsh types along a portion of
the central coast of Texas using remote sensing and landcover
classification techniques.

Study Area

Our study area encompassed the coastal zone of Matagorda
and Brazoria counties along the central coast of Texas (Fig. 1).
A series of barrier islands create 7 bays/estuary systems in our
study area: Matagorda Bay, East Matagorda Bay, Christmas
Bay, Drum Bay, Bastrop Bay, Chocolate Bay, and West Bay.
Coastal prairies and marsh cover extensive areas inland from
the bays and estuaries (e.g., > 140 km in some areas)
(Stutzenbaker and Weller 1989; Griffith et al. 2007). The
climate of the region is semi-arid to subtropical, and annual
rainfall averages 80 cm (Chen et al. 2002). Precipitation,
however, is extremely variable averaging from 60 to 104 cm
per year (Hobaugh et al. 1989). Historically, much of our
study area consisted of tall grass prairie, post oak savannah,
and flooplain forests. Much of the tall grass prairie has been
converted to rice agriculture (Stutzenbaker and Weller 1989).
Remaining coastal marsh in this area is used primarily for
cattle grazing. However, residential and commercial develop-
ment along the coast is further changing waterfowl foraging
habitats and potentially making it more difficult for species to
meet their dietary energy demands (Moulton et al. 1997).

Methods

We defined our survey area of interest and universe of poten-
tial coastal marsh through analyses of existing spatial datasets
for land cover and wetland classifications. Specifically, we
merged all polygons classified as wetlands in the (1) Texas
Ecological Systems Classification Project (Texas Parks and
Wildlife Department), (2) CCAP; (National Oceanic and
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Atmospheric Administration), and (3) NWI (U.S. Fish and
Wildlife Service) within Matagorda and Brazoria counties,
Texas. Once the desired wetland types were merged we
clipped the combined wetland area to the Texas General
Land Office coastal management zone. We then converted
the 30-m raster image to a point file using ESRI ArcMap 10×
(ESRI 2011). We used a kernel estimator to depict spatial
density of wetlands in our study area; we defined our study
area as those regions whose wetland density fell within the top
45 % of the density estimation (ESRI 2011; Fig. 2). We
clipped this area from Landsat 5 Thematic Mapper imagery
(date: 15 October 2011, path: 26, row: 40) and performed an
unsupervised classification in ERDAS Imagine to produce 5

generic land cover classes. We used these generic classes to
guide placement of sample points from which we collected
image classification training and validation data. We
established a series of transects, spaced 2,000 m apart and
oriented north to south across the full extent of our study area
which was approximately 2,115 km2. Along transects, we
initially established sample points every 2,000 m, but altered
this in an attempt to achieve an even distribution of points
among the 5 generic land-cover classes. On 2–3 October
2011, we sampled each point from a helicopter following
protocol of Visser et al. (1998, 2000). While the helicopter
hovered at about 10-m above ground level at each sample
point, an experienced observer recorded all plant species

Fig. 1 Extent (shaded area) of
coastal marsh survey region in
Matagorda and Brazoria
countries, Texas, October 2011
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within a 30-m radius of the sample point, along with an index
of their coverage (i.e., <5 %, 6–25 %, 26–50 %, 51–75 %,
>75 %). This technique has proven to be accurate and effec-
tive in delineating coastal marsh plant communities (Chabreck
1970).

We classified vegetation from 342 sample points within the
coastal zone of Brazoria and Matagorda counties. Fifty-five
percent of the points from each habitat class (totaling 185
points) were used in the supervised classification of coastal
marsh types (Fig. 2), and we used the remaining 45 % of
classified sample points within each habitat class (154 points)
to assess our classification accuracy.

Statistical Analyses We analyzed vegetation data using a two-
way indicator-species analysis (TWINSPAN) to assign them
to clusters of stations with similar species composition. Based
on this analysis, each sample point was assigned to one of the
four marsh types (Hill 1979). We conducted this analysis
because it more accurately predicts vegetation types compared
to other cluster analysis algorithms (Dale 1995). The
TWINSPAN output resulted in each sample point being clas-
sified as fresh, intermediate (oligohaline), brackish
(mesohaline), or saline (polyhaline or euhaline) based on
dominant vegetation types and coverage.We used the resulting
categories for marsh classification and accuracy assessment.

We used Landsat 5 Thematic Mapper imagery from 15
October 2011 to remotely classify coastal marsh types within

the 2 county study area. We first classified the survey area into
three types: marsh, open water, and non-marsh using unsu-
pervised and supervised classification tools and a cluster
busting technique in ERDAS Imagine (ERDAS 2011).
Cluster busting is a technique that separates mixed classes
by systematically differentiating classes based on reference
points.We performed an unsupervised classification and iden-
tified the pixel classifications as successful or unsuccessful
based on known reference points. We then masked out the
pixels that were classified successfully and reclassified pixels
that were classified unsuccessfully. We reevaluated the new
cluster and repeated the process until all pixels were classified
or until no additional classification could be achieved. We
used ancillary data (previous supervised and unsupervised
classifications, surrounding classification types, aerial photog-
raphy, and Soil Survey Geographic database [SSURGO,
Natural Resources Conservation Service]) to classify pixels
that remained unclassified after the cluster busting procedure.
This resulted in manually editing <1% of all pixels. We used a
minimum mapping unit of 0.405 ha for classification pur-
poses. Areas initially classified as marsh were further
delineated into fresh, intermediate, brackish, or saline
using the same process of cluster busting. We then con-
ducted an accuracy assessment on the final coastal marsh
classification using the 45 % of unused sample points and
with the default values in the accuracy assessment tool in
ERDAS Imagine.

Fig. 2 Kernel density estimation,
consisting of wetlands falling
within our study area, and
displayed using a standard
deviation of 0.5. All pre-flight
survey points are shown in this
figure, but not all were visited
during the survey. The finalized
wetland survey area included the
portions of the map with kernel
estimation from 0 to 45 % (The
bottom two estimation colors - red
and dark orange)
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Results

Seventy-two percent of the sampled points were classified as
coastal marsh with the remaining classified as open water or
non-marsh habitats (e.g., forested, agriculture, developed,
etc.). Three sampled points were on a corrupted edge of the
Landsat image and were excluded from analysis.

Total classified survey area was 122,995 ha, of which
86,324 ha were classified as marsh (Fig. 3). Our initial coarse
classification delineating coastal marsh from other landcover
types was 92 % accurate (i.e., 92 % of points were correctly
classified). Subsequent classification of the four marsh types
was 77.2 % (95 %CI=74.6–79.8 %) accurate with an overall
kappa statistic of 0.708 (95 % CI=0.691–0.725), suggesting
there was 70.8 % better agreement than by chance alone.
This classification resulted in intermediate, brackish, and salt
marsh each accounting for about 30 % of the coastal marsh
area, and fresh marsh <1 % (Fig. 3). Accuracy for classifi-
cation of fresh marsh was relatively low (20 %) compared to
the other marsh types (all >66.7 %; Table 1). This resulted
from the limited abundance of fresh marsh in our survey area
and the corresponding low number of reference points avail-
able (i.e., n=4).

A few spatial distribution patterns were evident in our final
classification scheme. As expected, salt marsh was located
closer to the coast compared to the other marsh types.
However, in the central and northern parts of the study area,
saline marsh extended inland 2–7 times further than in the
southern portion of the study area (Fig. 3). Saline and brackish
marshes were prevalent along channels entering the bays and
extended about 60 % further inland in these situations (Fig. 3).
Intermediate and fresh marshes occurred inland from saline
marsh and generally surrounded forested patches and freshwa-
ter streams. A salinity gradient was distinct in most areas, as
salinity decreased with increasing distance from the coastline.

Discussion

We successfully used remotely sensed imagery and spectral
classification techniques to classify four marsh types along the
Texas coast. This is a promising start for future delineation
efforts and demonstrates the potential for classification of
large areas of coastal marsh. However, our assignment of
marsh types to field reference points was based on associa-
tions between salinity concentrations and vegetation

Fig. 3 Final classification scheme showing the separation of surveyed area into freshwater marsh, intermediate marsh, brackish marsh, saline marsh,
open water, and other non-marsh habitat types within the coastal marsh zone in Brazoria and Matagorda counties, Texas
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community composition as documented in Louisiana (Visser
et al. 1998, 2000). Field observations during this study pro-
vided anecdotal evidence that dominant vegetation associa-
tions with salinity zones in Texas may differ from those in
Louisiana. Thus, a refined understanding of vegetation-
salinity associations in Texas may improve the accuracy of
future classifications.

We documented relatively even distribution among three
estuarine marsh types (intermediate 35 %, brackish 30 %, and
saline 35%), while freshmarshmade up <1% of our surveyed
area. Sasser et al. (2008) also reported a rather even distribu-
tion among all 4 marsh types along the Louisiana coast (fresh
27 %, intermediate 29 %, brackish, 21 %, and saline 23 %).
Most of the historic coastal fresh marsh in our study area has
been converted to rice agriculture and pasture. Six percent of
the stations that we sampled were classified as upland,
reflecting this conversion. Indeed, we observed fresh marsh
outside of our survey area; however, these areas were not
mapped because they were not within the coastal marsh zone
as defined in this study. Though nearby wetlands may be
similar in appearance and plant communities, they may not
be tidally influenced and therefore not considered coastal
marsh. One way to distinguish between tidally influenced
and non-tidally influenced wetlands would be to analyze
elevation data to help with classification.

Based on our results and experiences from this study, we
provide the following recommendations for an expanded
coastal marsh delineation survey for Texas: 1) convene a
meeting among stakeholders of Texas coastal marsh manage-
ment and conservation to collaboratively identify the spatial
extent for delineating coastal marsh, 2) consider adoption of
survey methodologies applied in this pilot study, 3) explore
alternative classification techniques and incorporation of an-
cillary data to improve the accuracy of the classification, and
4) ensure appropriate number of reference points are collected.
We used a combination of the Texas Government Land Office
Coastal Management Zone and kernel estimation to define the
spatial extent of classification in our study, but this represents
only one of many possible coastal zone depictions. There are

many potential applications and objectives for an operational,
repeatable coastal marsh survey; thus, these should be care-
fully considered when defining the spatial extent of a coastal
marsh survey zone.

We suggest the use of a helicopter to survey sample points
across the Texas coast as a virtual necessity. Use of a helicop-
ter enabled our survey crew to move quickly among sample
points without the need to gain access permission from a large
number of landowners. Due to the expanse and inaccessibility
of the coastal marsh in Texas, as well as the myriad of
landowners that would be involved, we suggest this is likely
the most efficient and effective way to collect the necessary
reference data. Additionally, pre-processing available spatial
data to discriminate between marsh and non-marsh areas will
ensure greater efficiency in locating sample points within
areas that will produce relevant reference data (i.e., will reduce
placement of sample locations in non-marsh habitats). For
example, of the 342 points we sampled, 95 were located in
non-marsh categories, which were not useful to our classifi-
cation of coastal marsh types. Using a Normalized Difference
Vegetation Index tool, much of the unwanted categories can
be removed and more survey time spent concentrating on the
categories of interest.

The spatial resolution of Landsat imagery used in this study
was 30-m, but higher resolution imagery is available from
other sensors. However, cost-benefit analyses may be war-
ranted for future efforts that consider more sophisticated clas-
sification techniques or imagery of greater spatial and spectral
resolution. One aspect that may increase classification accu-
racy but would require more survey points would be to create
a finer classification. In our study we combined vegetation
communities together into the four desired marsh types. Some
of these vegetation communities may not fall into one marsh
type or the other, but may indicate an intermediate type
between the more coarsely defined classifications we used.
Following a classification scheme similar to the Louisiana’s
Comprehensive Master Plan for a Sustainable Coast (Visser
et al. 2013) may yield more informative and ecologically
relevant results.

Table 1 Estimates of accuracy of supervised classification of coastal
marsh types derived from 342 sampled points in Brazoria and Matagorda
counties, Texas in October 2011. Reference totals are sample sizes of
ground reference points taken from each class (154 total). Classified totals
are the number of sample points classified by our assessment. Number

correct refers to the number of points that reference and classified are in
agreement. Producer’s accuracy (error of exclusion) refers to the proba-
bility of an actual on the ground classification being classified as such.
User’s accuracy (error of inclusion) refers to the probability that a pixel
classified by our classification is actually what is found on the ground

Class Name Reference Totals Classified Totals Number Correct Producers Accuracy (SE) Users Accuracy (SE)

Fresh 5 1 1 20.0 % (0.019) 100 % (0.00)

Intermediate 27 25 19 70.4 % (<0.001) 76.0 % (0.031)

Brackish 29 30 20 69.0 % (<0.001) 66.7 % (0.034)

Saline 50 55 43 86.0 % (<0.001) 78.2 % (0.030)

Water 22 26 22 100 % (<0.001) 84.6 % (0.026)

Other 21 17 14 66.7 % (<0.001) 82.4 % (0.027)
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We observed that marsh types generally do not have well-
defined borders, but rather are characterized by a gradient of
vegetation change. Thus, alternative image classification tech-
niques, such as fuzzy classification and accuracy assessment,
should be explored for their potential to increase classification
accuracy (Foody 1994, 1995; Kumar et al. 2007). Also, the
use of ancillary data such as high vertical and horizontal point
density of airborne Light Detection and Ranging (LIDAR)
could be used for determining changes in vegetation commu-
nities. LIDAR is a remote sensing technology used to measure
the distance to other objects by collecting a 3-dimensional
point cloud of laser return data from an aerial platform. Rosso
et al. (2005) used LIDAR to study vegetation changes asso-
ciated with Spartina invasion in San Francisco Bay marshes.
They found that the accuracy of LIDAR was high enough to
differentiate Spartina foliosa from a co-occurring Spartina
hybrid. Rosso et al. (2005) also used LIDAR to determine
the rate of expansion of Spartina patches within the coastal
marsh. Because Spartina species are common in Texas coastal
marshes, alternative methods to refine the mapping of these
vegetation communities may help marsh classification
models. Use of hyperspectral data may also increase the
accuracy of marsh type delineation. Hyperspectral imagery
includes many more bands (100 – 200) with narrow band-
widths from 5 to 10 nm, compared to multispectral imagery as
used in this study, which often has ≤10 bands with bandwidths
between 70 and 400 nm. Clark and Swayze (1995) and Clark
et al. (2003) used hyperspectral imagery to identify and map
water, snow, vegetation, and man-made objects. However,
hyperspectral imagery is more costly than most multispectral
data sources and may increase analysis time and data storage
needs. Additionally, use of multi-temporal imagery should be
explored because it has been demonstrated to improve classi-
fication accuracy (Yuan et al. 2005).

The number of reference points is a key determinant of the
resulting accuracy of a remotely sensed vegetation classifica-
tion (Congalton 1991; Jensen 2007). Jensen (2007) suggests
that the number of reference points used for the classification
should be 10 times the number of bands used to achieve
highest accuracy possible. Similarly, Congalton (1988) ad-
vises the use of at least 50 reference points per class for areas
<405,000 ha or when there are <12 classes, and suggests
between 75 and 100 reference points per class for all other
studies for sufficient accuracy assessment. Due to constraints
on helicopter time in our study, we were unable to sample the
number of reference points recommended by Jensen (2007)
and Congalton (1988). Ideally, we would have visited 550
points comprised of 300 training points (6 bands × 10 refer-
ence points × 5 classes) and 250 points used for accuracy
assessment (50 reference points × 5 classes). We suggest
future surveys follow these recommendations to yield higher
classification accuracy. Increasing the number of reference
points sampled will likely result in an increase in sampling

the spectral differences available within each class. This will
facilitate detection of available variation in spectral signatures
and increase accuracy of the classification. Additionally, sam-
pling more reference points will help to curb problems related
to low sample sizes in less available habitat types, such as
fresh marsh in our study.

We provide a repeatable framework for delineating coastal
marsh types in Texas. When expanded to relevant portions of
the entire Texas coast, this dataset should provide substantial
benefits to numerous landscape-scale conservation planning
and management efforts. For example, the GCJV assumes
waterfowl food resources differ in quality and abundance
among the different marsh types, with fresh marsh providing
the greatest density of waterfowl foods and salt marsh the
lowest. The GCJV uses a bioenergetics model to combine
estimates of waterfowl food abundance for each marsh type
with data on their spatial abundance and configuration to
calculate landscape-scale carrying capacity for wintering wa-
terfowl. Estimates of landscape carrying capacity are subse-
quently compared to habitat needs for target waterfowl popu-
lations to help identify conservation needs and priorities.
Spatial mapping of Texas coastal marsh types at a level of
detail previously unavailable will enable the GCJV to refine
assessments of landscape carrying capacity for wintering wa-
terfowl and refine conservation priorities as appropriate.
Ultimately, refinements to conservation priorities will increase
the efficiency with which conservation resources are allocat-
ed. However, our study addressed only a small portion of the
central Texas coast; a comprehensive delineation of marsh
types along the Texas coast is needed.

Additionally, this survey and the resulting spatial dataset
will enable examination of temporal changes in distribution of
Texas marsh types and how they may impact populations of
other fish and wildlife and the coastal economies that depend
upon them. This will become a growing need as concerns
about climate change and sea level rise intensify. Indeed, the
Intergovernmental Panel on Climate Change (IPCC) suggests
that global sea levels will increase between 30 and 100 cm by
2,100. Other reports, such as Rahmstorf (2007), propose that
the IPCC is providing a conservative estimate and that sea
level rise will be between 50 and 140 cm by 2,100. In either
scenario, rising sea level will cause marsh to migrate inland,
become submerged, or both, resulting in substantial changes
to habitat values for fish and wildlife populations along the
Texas coast (Moorhead and Brinson 1995). The increased
availability of remotely sensed imagery and advancements
in spectral classification techniques provide tremendous op-
portunities to efficiently monitor temporal changes in coastal
marsh distribution and their impacts on fish, wildlife, and
coastal economies. Coastal change models, combined with
further marsh delineation, will be useful tools allowing coastal
managers to involve the public in discussions concerning sea
level rise and to make more educated management decisions.
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